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Evaluating Probability Distributions
The brain seems to take near-optimal (Bayesian) decisions at all levels of information processing, from early feature integration to behavior. But how do cortical circuits compute Bayesian inference, given that neurons respond in an unreliably way, and literal probability distributions would suffer from a combinatorial explosion of (e.g. sensory) states? One proposal takes advantage of the Poisson-like variability in cortical responses, where Bayesian inference simplifies to a linear combination of neuronal activity, and activity distributions take on a Gaussian shape (Ma et al., 2006; Beck et al., 2006). It has also been suggested that bottom-up information combined with top-down feedback implements a hierarchical Bayesian inference framework, similar to proven computer vision algorithms such as particle filters, Bayesian belief propagation, or according to a Markov chain (Lee & Mumford, 2003).  Proposals for dealing with the combinatorial explosion of states include the factorized approximation of a probability distribution (Burak et al., 2010).  Common to all mentioned approaches is that they operate on a (probabilistic) population code in cortical areas.  Also, the evaluation of the population code leads usually to one decision, for example by looking for the activity maximum. 

Here I present a different neuronal circuit that operates on any probability density function (“activity representation”) and apply it to the retina.  Specifically, my circuit serves to segment the retinal image according to its dynamic range. This means that each photoreceptor is assigned to a mode of the probability density function of  luminance of the current retinal image. In this way, a content-based and unsupervised adaptation of the retinal image can be implemented. The computations are achieved by purely local operations, and could be related to the functional physiology of the outer retina.
Relationship to Data Clustering
The motivation for my proposed circuit comes from successful models for explaining the processing of lightness (Krawczyk, Myszkowski & Seidel, 2006), and segregation of reflectance from shading in the brain (Gehler et al., 2011).  Common to the latter approaches, but also to many other applications for analyzing data (e.g. in computer vision or image processing), is that they rely on data clustering.  Clustering involves the assignment of data points to the modes of their underlying probability density function, what results in a simplified (or sparse) description of the original data. Widely used clustering algorithms are k-means and meanshift (Comaniciu. & Meer, 2002). Both algorithms, however, are incompatible with neuronal computations. In addition, k-means needs to “know” the number of clusters beforehand, and meanshift relies heavily on post-processing (merging clusters).  Both methods are furthermore sensitive to the initial conditions, and consequently need to be run several times in order to arrive at a stable solution.  In contrast, my method is insensitive to initial conditions and usually does not require any post-processing (e.g. cluster merging), and similar to meanshift, it finds the number of clusters in a fully unsupervised fashion.

Conclusions

Here I propose a novel neuronal circuit that operates on neuronal activity representations.  This circuit may explain how the brain (specifically the retina) can carry out a clustering-like data analysis, which is important for low-level vision tasks (e.g. segmentation) and neuronal coding (e.g. sparse representations).  Apart from that, it furthermore represents a new technique for general data analysis, which is simpler and seems to be more stable than existing algorithms.
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